3.169 \(\int \frac{\sqrt{c+d x^2}}{(a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=84 \[ \frac{\sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|1-\frac{a d}{b c}\right )}{\sqrt{a} \sqrt{b} \sqrt{a+b x^2} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

[Out]

(Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt[a]], 1 - (a*d)/(b*c)])/(Sqrt[a]*Sqrt[b]*Sqrt[a + b*x^2]*Sqr
t[(a*(c + d*x^2))/(c*(a + b*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.0168172, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {411} \[ \frac{\sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|1-\frac{a d}{b c}\right )}{\sqrt{a} \sqrt{b} \sqrt{a+b x^2} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/(a + b*x^2)^(3/2),x]

[Out]

(Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[b]*x)/Sqrt[a]], 1 - (a*d)/(b*c)])/(Sqrt[a]*Sqrt[b]*Sqrt[a + b*x^2]*Sqr
t[(a*(c + d*x^2))/(c*(a + b*x^2))])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right )^{3/2}} \, dx &=\frac{\sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )|1-\frac{a d}{b c}\right )}{\sqrt{a} \sqrt{b} \sqrt{a+b x^2} \sqrt{\frac{a \left (c+d x^2\right )}{c \left (a+b x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.279228, size = 133, normalized size = 1.58 \[ \frac{x \left (c+d x^2\right )+\frac{i c \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (E\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )-\text{EllipticF}\left (i \sinh ^{-1}\left (x \sqrt{\frac{b}{a}}\right ),\frac{a d}{b c}\right )\right )}{\sqrt{\frac{b}{a}}}}{a \sqrt{a+b x^2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/(a + b*x^2)^(3/2),x]

[Out]

(x*(c + d*x^2) + (I*c*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*(EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]
- EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/Sqrt[b/a])/(a*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.031, size = 181, normalized size = 2.2 \begin{align*}{\frac{1}{ \left ( bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac \right ) a} \left ({x}^{3}d\sqrt{-{\frac{b}{a}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) c\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{b{x}^{2}+a}{a}}}+{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) c\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{b{x}^{2}+a}{a}}}+xc\sqrt{-{\frac{b}{a}}} \right ) \sqrt{d{x}^{2}+c}\sqrt{b{x}^{2}+a}{\frac{1}{\sqrt{-{\frac{b}{a}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a)^(3/2),x)

[Out]

(x^3*d*(-b/a)^(1/2)-EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*c*((d*x^2+c)/c)^(1/2)*((b*x^2+a)/a)^(1/2)+Ellipt
icF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*c*((d*x^2+c)/c)^(1/2)*((b*x^2+a)/a)^(1/2)+x*c*(-b/a)^(1/2))*(d*x^2+c)^(1/2
)*(b*x^2+a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)/a/(-b/a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/(b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{2} + a} \sqrt{d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(d*x^2 + c)/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}}}{\left (a + b x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a)**(3/2),x)

[Out]

Integral(sqrt(c + d*x**2)/(a + b*x**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 + c)/(b*x^2 + a)^(3/2), x)